

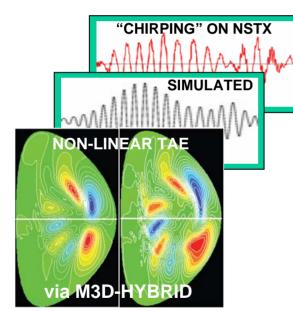
NSTX Research Plan – FY05-07

Contributing to Fusion Energy Science, Burning Plasma (ITER), & Concept Optimization

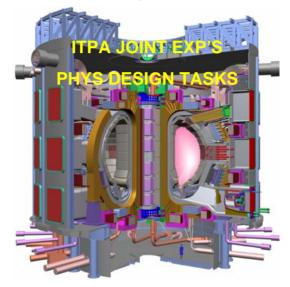
Martin Peng ORNL

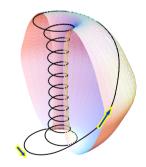
For the NSTX Team

Budget Planning Meeting – FY 2007


March 15-16, 2005 Germantown, Maryland

Columbia U Comp-X **General Atomics** Johns Hopkins U LANL I I NI Lodestar **Nova Photonics New York U Old Dominion U ORNL PPPL PSI** SNL **UC Davis UC Irvine UCLA** UCSD **U** Maryland **U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching **U Quebec**


NSTX Will Advance Toroidal Plasma Science, Burning Plasma Physics, and Configuration Optimization

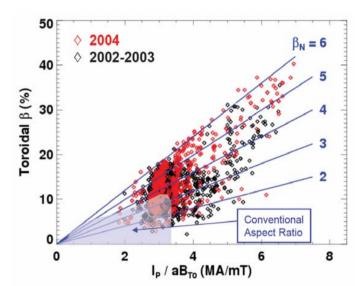

Science: Extended Parameters

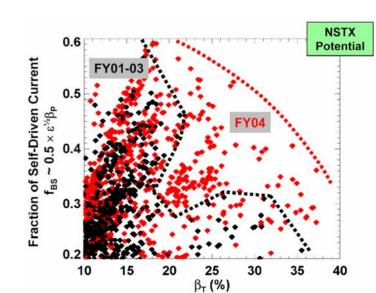
Burning Plasma

Optimization: Unique & Complementary

Contribute to OFES Strategic Goals

by Addressing Scientific Topics:


- Microturbulence & Transport
- Macroscopic Stability
- Waves & Energetic Particles
- Magnetic Flux Generation
- Boundary Interactions
- Synergy & Integrated Scenarios


BPM, 3/15-16/05

NSTX Had a Successful Year; Achieved 21 Run-Weeks; Made Key Progress on a Broad Scientific Front

- Expanded parameter space via improved control, shaping & operation broadening plasma science.
- Extended high beta-tau discharges with high B/S fraction to > tau-skin, with wall-stabilization of strongly rotating plasma.
- Measured RWM at substantially above no-wall limit, indicating $\omega_{crit}/\omega_{\Delta} \sim 1/q^2$, consistent with neoclassical visc.
- Measured large radial correlation length of fluctuations in core that decreases with increasing B_T and radius.
- Observed increased electron energy confinement via reversed q-shear; verified ion Internal Transport Barrier.
- Reconstructed equilibria for strong plasma rotation, constrained by isothermal electrons and MSE field pitch.
- Determined via MSE & EFIT changes in core current density resulting from variations in operating scenario.
- Observed and modeled *AE's driven by supra-Alfvénic ions, which are anticipated in ITER burning plasma.
- Measured via NPA fast ion depletion due to MHD modes.
- Identified bursts of edge plasma filaments ("blobs") as primary characteristics of ELMs of varied severity.
- Measured EBW emission from core, consistent with theory.
 - Obtained first evidence of parametric ion heating by HHFW.

NSTX Prepared Three Plans for FY 2006-2007 to Deal with Present Uncertainties

Case	FY06 Rn-Wks	FY07 Rn-Wks	Accumulated	Upgrades
1	0	12	12	Minimal
2	12	12	24	Constrained
3	17	17	34	Optimized

- Case 2 in some detail
- Impact of Case 1
- Benefits of Case 3
- Summary charts of milestones as backup

Requested FY07 information for 0, 6, 12, 20, & 25 run-weeks is supplied separately in hand-outs

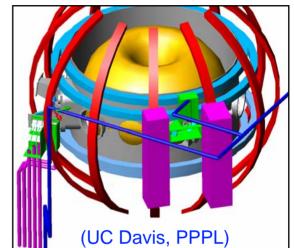
BPM, 3/15-16/05

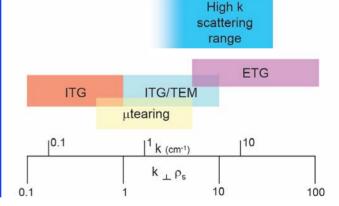
NSTX-Science-FY05-07

Transport Studies Will Emphasize High-k Turbulence and Electron Transport, Leveraging Large β , ρ^* , q-Shear

Motivation & NSTX Opportunities

- Priority Panel (T4) & world priority; TTF initiative with emphasis on extended understanding of electron scale transport
- Key remaining scaling uncertainty for ITER add to ITPA
- Large k (= 2 20 cm⁻¹), q-shear, ~ 3 cm spatial resolution
- Central β up to unity \rightarrow clarify electromagnetic effects


Milestones


BPM, 3/15-16/05

- FY05: test high-k μw scattering; extend MSE; q' & ∇T_e effects
- FY06: measure high-k turbulence in wide parameters
- FY07: correlate turbulence spectra with electron transport
- Extensive analysis: NL-GS2, GTC, FULL, GYRO, TRANSP

Additional Investigations

- Strengthen ITPA global ELMy H-mode & pedestal database
- iITB similarity experiments, momentum transport, with MAST
- H-mode aspect ratio comparison with DIII-D

NSTX-Science-FY05-07

1) Transport & Turbulence: Physical processes that govern heat, particle & momentum confinement

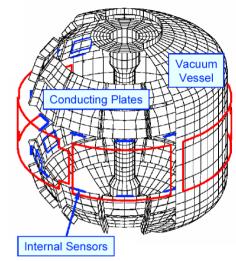
Characterize q' & ∇T_e effects on electron transport

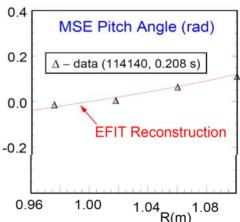
Measure high-k turbulence

Assess high-k turbulence spectra and electron transport

Macroscopic Stability Studies to Advance Physics of Pressure-Limiting Modes via Feedback & Strong Shaping

Motivation & NSTX Opportunities


- Priority Panel (T2): what limits maximum pressure that can be achieved in laboratory plasmas? Also to enhance ITER performance
- Improved shaping ($\kappa \le 2.7$, $\delta \le 0.9$) $\Rightarrow \beta_T \le 40\%$, $\beta_N \le 6$, $I_N \le 6.5$, low ℓ_i
- New ex-vessel control coils, SPA power, internal sensors, with feedback capabilities progressively phased-in
- Resolve mode dynamics via $\beta_0 \to 1$, $V_{\phi} \to V_{Sound} \to V_{Alfvén}$, $V_{\phi}' \to \gamma_{MHD}$


Milestones

- FY05: explore high-β plasmas via minimizing EF
- FY06: correlate resonant error field amplification, locked mode, β
- FY07: explore very high β regime close to wall-stabilized limit!
- Extensive analysis: EFIT-V_Φ-isotherm-MSE, VALEN, MARS, M3D, ...

Additional Investigations

- Joint experiments on RWM & locked mode physics with Tokamaks
- Aspect ratio comparison on NTM physics with Tokamaks

2) Macroscopic Stability: Role of magnetic structure on plasma pressure & bootstrap current

Study rotating plasmas close to "wall-stability" with EF correction **Characterize effectiveness** of closed-loop EF/LM control **Characterize effectiveness** of closed-loop RWM control

FY05 (17 wks) FY06 (12 wks)

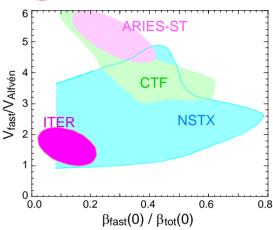
FY07 (12 wks) NSTX-Science-FY05-07

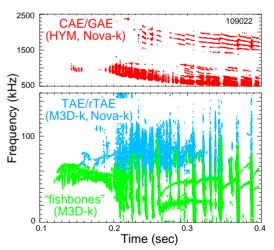
Wave-Particle Research Will Make Unique Contributions to Understanding Supra-Alfvénic Ion Driven Modes for ITER

Motivation & NSTX Opportunities

- ITER burning plasma will have supra-Alfvénic α's & beam ions
- NSTX covers the ITER regime in V_{fast}/V_A and β_{fast}/β_T ; and has measured range of *AE's driven by such ions of confined orbits

Milestones


BPM, 3/15-16/05


- FY05: measure *AE's & correlate with fast ion, J_{NB} changes
- Extensive core measurements: USXR tomography for mode structure; fast tang. interferometer for amplitude; MSE for J profile
- Extensive analysis: linear & non-linear simulations
- Future: understand fast ion transport due to *AE cascades
- FY06: understand edge coupling (parametric and RF sheath effects) and optimize HHFW scenario

Additional Investigations

- EBW: B-X-O emission @ 20-40 GHz, to understand potential of Ohkawa current drive & electron phase space science
- Accumulate physics database for future high power EBW

NSTX-Science-FY05-07

3) Wave-Particle Interaction: Use of electromagnetic waves to sustain and control high-temperature plasmas

Assess effects of supra-Alfvénic ion driven instabilities on core J_{NB}

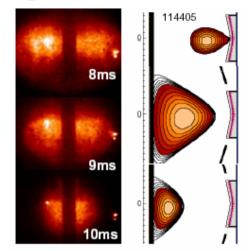
Characterize & optimize

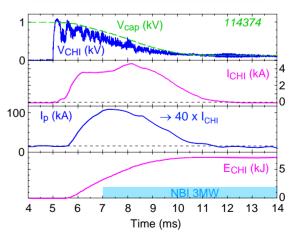
HHFW coupling

Solenoid-Free Start-up Tests Will Contribute to Understanding of Flux Generation and Reconnection

Motivation & NSTX Opportunities

- Priority Panel (T6); important to tokamak reactor attractiveness;
 required for compact ST such as CTF
- Low A → low internal magnetic flux and helicity
- Large progress: HIT-II (CHI to 200 kA); TST-2, LATE (ECH + VF to 0.1 I_{TF} ~ 10 kA); JT-60U (ECH + VF, to >100 kA for >100 ms);
 MAST (merging-compression, to 500 kA); NSTX (HHFW + field null, to 20 kA); Pegasus (e-beam, to 10 kA)


Milestones


BPM, 3/15-16/05

- FY06: test & understand conditions and scenarios for flux closure via CHI injector gas puff, 2-kV, low-I_D control
- FY07: clarify low-A physics for NBI & HHFW current ramp-up
- Extensive analysis: TSC, EFIT-J_{SOI}, LRDIAG, DINA

Additional investigations

- Extend HHFW initiation with ECH preionization
- Collaborate with MAST; proposal to JET (LH-initiation)

NSTX-Science-FY05-07

4) Start-up, Ramp-up and Sustainment: Physical processes of magnetic flux generation and reconnection

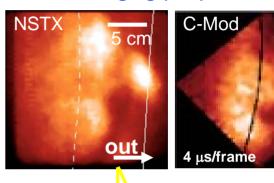
Assess CHI creation of closed magnetic flux

Test solenoid-free ramp-up

Boundary Physics Studies Aim to Understand Pedestal-SOL Science of Long-Pulse High-P/R Plasmas

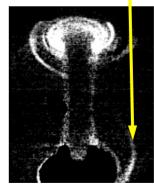
Motivation & NSTX Opportunities

- Priority Panel (T10); enhance progress to predict H-mode pedestal with high confidence; ITPA priority
- Low A: $B_p/B_T \sim 1$, large $B_{in}/B_{out} \& \rho^*$, $P/R \rightarrow 15$ MW/m
- New tools: Li pellets/coating, supersonic gas jet, better TS


Milestones

- FY05: document detail of pedestal-SOL properties and dynamics
- Successful GPI adopted by several experiments
- "Blobs" linked to ELMs; "peeling" or shear Alfvén?
- FY07: document Li coating effects on recycling and core plasma; database for advanced particle control
- Extensive analysis: BOUT, ELITE, UEDGE, DEGAS2

Additional Investigations


 Pedestal similarity, small ELM comparison, "blob" characteristics comparison, with MAST, DIII-D, C-Mod

Gas Puff Imagnig (GPI)

Small ELM

Large ELM

NSTX-Science-FY05-07

5) Boundary Physics: Interface between fusion plasmas and normal temperature surroundings

Characterize pedestal and SOL of low-A, H-mode, high P/R plasmas

Characterize Li pellet & evaporator coating effectiveness

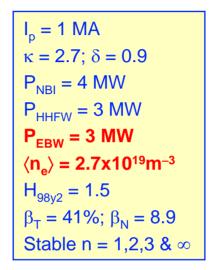
FY05 (17 wks) FY06 (12 wks) FY07 (12 wks)

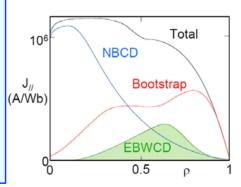
BPM, 3/15-16/05

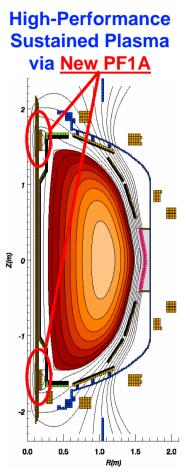
Integrated Scenario Studies Contribute to Understanding of Self-Organization and External Control

Motivation & NSTX Opportunities

- Priority Panel (T3): integrated understanding of self-organization & external control, enabling highpressure sustained plasmas; ITER "hybrid" mode
- High β & low A: clarify B/S vs. CD
- Clarify future EBW and particle control needs


Milestones


BPM, 3/15-16/05


- FY05: document and understand physics interplay of attractive, low-V_L, NBI plasmas
- FY06: benchmark simulation models & codes
- Identify needed "actuators" & model improvements
- Future: determine conditions for surface V_L = 0
 long-pulse operation, though q₀ may evolve

Additional Investigations

 Contribute to mapping of ITER/NSTX hybrid scenario, accounting for *AE effects

NSTX-Science-FY05-07

6) Physics Integration: Synergistic effects of external control and self-organization

Characterize high-B/S & low-V_L plasmas for > τ_{skin}

Benchmark time-dependent scenario simulation with data

NSTX Participates Strongly in ITPA Topical Groups and is Committed to Important 2005 Joint Experiments

Topical Groups	ID#	Burning Plasma Issues	Participating Programs
Confinement Database &	CDB-2	β degradation in confinement scaling of ELMy H-modes	AUG, DIII-D, JET, JT-60U, MAST, NSTX, Tore-Supra
Modeling	CDB-6	Improving condition of global ELMy H-mode and pedestal database: low A	DIII-D, MAST, NSTX
Transport	TP-8.1	ITB similarity experiments	MAST, NSTX
Physics TP-9		H-mode aspect ratio comparison	DIII-D, MAST, NSTX
Pedestal & Edge	PEP-9	Pedestal similarity experiments	DIII-D, MAST, NSTX
Physics	PEP-16	Small ELM regime comparison	C-Mod, MAST, NSTX
Divertor, SOL	DSOL-9	Carbon migration and deposition	AUG, DIII-D, JET, JT-60U, NSTX, TEXTOR
	DSOL-15	Comparison of edge "blob" characteristics	C-Mod, JT-60U, NSTX, TJ-II, Tore-Supra
MHD, Disruption Control	MDC-2	Resistive Wall Mode physics	AUG, DIII-D, JET, JT-60U, NSTX, TEXTOR
	MDC-4	Neoclassical Tearing Mode – A comparison	AUG, DIII-D, MAST, NSTX
	MDC-6	Error field physics comparison	C-Mod, DIII-D, JET, MAST NSTX, TEXTOR
	MDC-9	Fast-ion redistribution by *AE & cascade	AUG, DIII-D, JET, JT-60U, NSTX
Steady-State Op	SSO-2.1	Complete mapping of hybrid scenario	AUG, DIII-D, JET, JT-60U, NSTX

BPM, 3/15-16/05

Case-1 Impact Will Be Severe – National Research Team will Strive to Make Important Contributions

- FY06 milestones delayed to FY07 (12 run-weeks).
- Three code and tool benchmark milestones for FY06:
 - Compare EF/LM/RWM data with models of stability conditions.
 - Compare fast ion driven mode data with non-linear simulation.
 - Benchmark time-dependent scenario simulation with high-B/S, low-V_L data.
- Hold results review early in FY06; analyze data; present and publish FY05 results, expected to be extensive and important.
- Carry out ITER Physics Design Tasks using appropriate expertise.
- Enhance collaboration with MAST, DIII-D, C-Mod, etc. in critical topical areas, utilizing remote experimental participation.
- Install diagnostics and facility improvements (minimal non-labor funds) to prepare for early FY07 run.

Hold FY07 NSTX Research Forum in FY06.

BPM, 3/15-16/05

NSTX-Science-FY05-07

NSTX Case-3 Plan will Advance OFES Strategic Goals Effectively in Science, Burning Plasma, and Optimization

- Exciting NSTX science can be accelerated.
 - Combine EF & RWM active feedback control earlier; perform intensive tearing mode studies.
 - Measure fast-ion transport due to fast-ion driven modes.
 - Accelerate Li coating milestone; assess long-pulse heat & particle control requirements of low-A, H-mode, high P/R plasmas.
 - Characterize surface $V_L = 0$ plasmas for $> \tau_{skin}$.
 - Make decision on advanced particle control.
- Can enhance participation in ITPA on critical topics.
- Rapid progress in science will be made in a broad front.
- Begin high-power EBW preparation, a key to advancing performance of high-β, high-B/S, high-confinement plasmas.

BPM, 3/15-16/05 NSTX-Science-FY05-07

NSTX Will Advance Toroidal Plasma Science, Burning Plasma Physics, and Optimization

- Prepared three plans with progressive levels of research.
- Case-2 plan, assuming 12 run-weeks for FY06 and FY07, will
 - Emphasize high-k turbulence and electron transport;
 - Advance physics of pressure-limiting modes via feedback & very strong shaping;
 - Make unique contributions to understanding supra-Alfvénic ion driven mode;
 - Contribute to understanding of magnetic flux generation and reconnection;
 - Understand pedestal-SOL science of long-pulse high-performance plasmas.
- NSTX addresses key Priority Panel topics and participates strongly in ITPA 2005 Joint Experiments.
- Case-1 impact will be severe National Team will strive to make important contributions.
- Case-3 will advance OFES Strategic Plan Effectively.

Case-1 Plan (No Run in FY06, 12 Run-Weeks in FY07) Research Milestones

	FY05		FY06		FY07	FY09
Exp. Run-	Weeks:	17	0*		12*	

1) Transport & Turbulence: Physical processes that govern heat, particle and momentum confinement

Characterize q' & ∇T_a effects on electron transport

(1) Measure high-k turbulence

2) Macroscopic Stability: Role of magnetic structure on plasma pressure and bootstrap current

Study rotating plasmas close to "wall-stability" with EF correction

- (1) Compare EF/RWM/LM data with theoretical models of stability conditions
- (1) Characterize effectiveness of closed-loop EF/LM control
- 3) Wave-Particle Interaction: Role of electromagnetic waves & modes in sustaining and controlling hot plasmas

Assess effects of supra-Alfvénic (1) Compare fast ion driven mode (1) Characterize & optimize ion driven instabilities on core J_{NB} data with non-linear simulation

- - **HHFW** coupling
- 4) Start-up, Ramp-up and Sustainment: Physical processes of magnetic flux generation and reconnection

(1) Assess CHI creation of closed magnetic flux

5) Boundary Physics: Interface between fusion plasmas and normal temperature surroundings

Characterize pedestal and SOL of low-A, H-mode, high P/R plasmas

6) Physics Integration: Synergistic effects of external control and self-organization

Characterize high-B/S & low-V₁ plasmas for $> \tau_{skin}$ (1) Benchmark time-dependent scenario simulation with high-B/S & low-V₁ data

Advanced Particle Control Decision Point

Case-2 Plan (12 Run-Weeks for FY06 & FY07) Research Milestones

	FY	705	FY06	FY07	FY08
Exp. Run-Weeks:		17	+12*	12	1
4\ T	0 T		and that manage hand monthly an	-l	

1) Transport & Turbulence: Physical processes that govern heat, particle and momentum confinement

Characterize q' & ∇T_e effects on electron transport

- (2) Measure high-k turbulence
- (2) Assess high-k turbulence spectra and electron transport

2) Macroscopic Stability: Role of magnetic structure on plasma pressure and bootstrap current

Study rotating plasmas close to "wall-stability" with EF correction

- (2) Characterize effectiveness of closed-loop EF/LM control
- (2) Characterize effectiveness of closed-loop RWM control
- 3) Wave-Particle Interaction: Role of electromagnetic waves & mdoes in sustaining and controlling hot plasmas

Assess effects of supra-Alfvénic ion driven instabilities on core J_{NR}

(2) Characterize & optimize HHFW coupling

4) Start-up, Ramp-up and Sustainment: Physical processes of magnetic flux generation and reconnection

(2) Assess CHI creation of closed magnetic flux

(2) Test solenoid-free ramp-up

5) Boundary Physics: Interface between fusion plasmas and normal temperature surroundings

Characterize pedestal and SOL of low-A, H-mode, high P/R plasmas

(2) Characterize Li pellet & evaporator coating effectiveness

6) Physics Integration: Synergistic effects of external control and self-organization

Characterize high-B/S & low- V_L plasmas for > τ_{skin}

*CASE-2

(2) Advanced Particle Control Decision Point

Case-3 Plan (17 Run-Weeks in FY06 and FY07) Research Milestones

	FY05	FY06	FY07		
Exp. Ru	n-Weeks: 17	12 + <mark>5</mark> *	12 + 5*	\	
1) Transp	ort & Turbulence: Physical proces	ses that govern heat, particle &	momentum confinement		
	Characterize q' & ∇T _e effects	(2) Measure high-k turbulence	` '		
	on electron transport		spectra and electron transport		
2) Macros	scopic Stability: Role of magnetic	structure on plasma pressure &	bootstrap current		
	Study rotating plasmas close	(3) Characterize effectiveness	` '		
	to "wall-stability" with EF	of closed-loop EF/RWM	mode onset conditions &		
	correction	control	impact		
3) Wave-F	Particle Interaction: Use of electror	<u>magnetic waves to sustain and c</u>	control high-temperature plasmas		
	Assess effects of beam-Alfvénic	(2) Characterize & optimize	(3) Measure fast-ion transport		
	ion driven instabilities on core J _{NE}	3 HHFW coupling	due to fast-ion driven modes		
<u>4) Start-u</u>	p, Ramp-up and Sustainment: Phy	sical processes of magnetic flu	x generation and reconnection		
		(2) Assess CHI creation of	(2) Test solenoid-free ramp-up		
		closed magnetic flux			
5) Bound	<u>ary Physics: Interface between fus</u>	sion plasmas and normal temper	rature surroundings		
	Characterize pedestal	(3) Characterize Li pellet &	(3) Assess long-pulse heat &		
	and SOL of low-A, H-mode,	evaporator coating	particle control requirements of		
	high P/R plasmas	effectiveness	low-A, H-mode, high P/R plasm	as	
6) Physic	<u>s Integration: Synergistic effects c</u>	of external control and self-orga	<u>nization</u>		
	Characterize high-B/S & low-		(3) Characterize surface $V_L = 0$		
	•		plasmas for $ > \tau_{skin} $		

*CASE-3

(3) Advanced Particle Control Decision Point